Åtgärder

Skillnad mellan versioner av "Avrundning"

Från Skolbok

m
(Fortsätter om värdesiffror)
Rad 8: Rad 8:
 
# Alla siffror mellan 1 och 9 (dvs alla siffror utom 0) räknas alltid som värdesiffror.
 
# Alla siffror mellan 1 och 9 (dvs alla siffror utom 0) räknas alltid som värdesiffror.
 
# Om ett tal slutar på en eller flera nollor, och inga decimaler finns angivna, går det inte att säga utifrån enbart talet om dessa nollor är värdesiffror eller inte. Om vi väger ett äpple på en våg med en noggrannhet på 1 gram, och vågen visar 190 gram, så räknas den sista nollan som en värdesiffra eftersom den bidrar med information om vad äpplet väger (den hade ju kunnat vara något annat än en nolla). Om en våg som bara kan visa hela tiotals gram visar att ett äpple väger 190 gram så räknas inte nollan.
 
# Om ett tal slutar på en eller flera nollor, och inga decimaler finns angivna, går det inte att säga utifrån enbart talet om dessa nollor är värdesiffror eller inte. Om vi väger ett äpple på en våg med en noggrannhet på 1 gram, och vågen visar 190 gram, så räknas den sista nollan som en värdesiffra eftersom den bidrar med information om vad äpplet väger (den hade ju kunnat vara något annat än en nolla). Om en våg som bara kan visa hela tiotals gram visar att ett äpple väger 190 gram så räknas inte nollan.
# En nolla som kommer först i ett tal (dvs före någon siffra som inte är en nolla) räknas inte som en värdesiffra. I talet 0,0000121 finns det tre värdesiffror, eftersom nollorna som inledert talat inte räknas. De tre värdesiffrorna är 1, 2 och 1.
+
# En nolla som kommer först i ett tal (dvs före någon siffra som inte är en nolla) räknas inte som en värdesiffra. I talet 0,0000121 finns det tre värdesiffror, eftersom nollorna som inleder talet inte räknas. De tre värdesiffrorna är 1, 2 och 1.
 +
:Varför räknar man inte en nolla som inleder ett tal? Vi sade tidigare att en värdesiffra är en siffra som ger oss någon form av faktisk information. Kan inte en nolla som inleder ett tal ge någon information? Det är ju trots allt skillnad mellan 0,121 och 0,0000121, rent matematiskt. Problemet är det, att man alltid kan få godtyckligt många nollor i början av ett tal genom att byta enhet. Ta vårt 186-gramsäpple som exempel. 186 har tre värdesiffror, och värdesiffrorna talar om, i princip, hur noggrann vår våg är. Vågens noggrannhet är oberoende av vilken enhet vi anger äpplets vikt i. Om vi anger äpplets vikt som 186 gram, 0,186 kilo eller 0,000186 ton påverkar inte hur noggrann våg vi har; den har fortfarande samma noggrannhet. Därför räknas inte inledande nollor.
  
 +
Ovan finns ett antal exempel på när nollor inte räknas som värdesiffror. Men i vissa fall ska nollor faktiskt räknas. En nolla som kommer mellan två siffror som är värdesiffror räknas. Om vårt äpple hade vägt 201 gram hade nollan i mitten räknats som en värdesiffra, eftersom den kommer mellan två andra värdesiffror (2 och 1). Samma hade gällt om något hade vägt 2001 gram (fast då hade det nog inte varit ett äpple). Då har vikten fyra värdesiffror eftersom båda nollorna räknas. En nolla efter ett decimalkomma räknas alltid, om det finns någon annan siffra än en nolla före decimalkommat. Det gör att 0,00121 har tre värdesiffror, medan 1,00121 har sex värdesiffror. På samma sätt har 100 en, två eller tre värdesiffror (med nollor i slutet på tal utan angivna decimaler vet man inte så noga hur de ska räknas; det får framgå av sammanhanget, se ovan), medan 100,0 har fyra värdesiffror. Ettan i början räknas (alla siffror utom 0 räknas ju alltid), nollan i slutet räknas eftersom den kommer efter ett decimalkomma och det finns andra värdesiffror före decimalkommat, och de två övriga nollorna räknas eftersom de kommer mellan två värdesiffror (den första ettan och den sista nollan).
 
[[Kategori: Matematik]]
 
[[Kategori: Matematik]]

Versionen från 29 augusti 2012 kl. 19.23

Den här sidan är tänkt för högstadiet. Sidan innehåller en sammanfattning av regler och metoder för att avrunda mätetal eller att svara exakt utan att behöva avrunda.

Värdesiffror

Antag att du väger ett äpple och finner att vågen visar att äpplet väger 186 gram. Vad väger då äpplet egentligen? Kan du vara säker på att det väger exakt på pricken 186 gram? Nej, det kan du inte. Givetvis kan vågen vara trasig med mera, och därför visa fel vikt, men även om den inte är det kan du inte vara säker på att äpplets massa är exakt 186 gram. Säg att du istället hade haft en våg som hade kunnat väga milligram, dvs tusendels gram. Den vågen hade kanske visat 185,789 gram, eller 186,414 gram eller något annat liknande, dvs inte exakt 186 gram. Det är givetvis möjligt att den hade visat exakt 186,000 gram, men din mindre noggranna våg, som bara visar hela gram, hade inte kunnat registrera någon skillnad mellan ett äpple som väger 185,789 gram och ett som väger 186,414 gram. På samma sätt skulle en våg som bara anger vikt i tiotals gram angett att äpplet vägde 190 gram, och en badrumsvåg som typiskt har en noggrannhet på 0,5 kg hade angett att äpplet inte vägde något alls. Låt oss gå tillbaka till vågen som anger vikt i hela gram. Om du ska ange så noggrant du kan vad äpplet väger, vad ska du då svara? Rimligtvis svarar du 186 gram. Knepet är att vara så noggrann man kan, men inte låta den man pratar med tro att ens mätningar är noggrannare än vad de faktiskt är. Vore det fel av dig att ange äpplets vikt till 186,000000 gram? Ja, det vore det. Visserligen är talet 186 rent matematiskt samma sak som 186,000000, men problemet är att om du anger vikten på det sättet så kan den som läser det du skriver luras att tro att du faktiskt har vägt äpplet med en våg som kan mäta miljondels gram. Du vet ju inte om ditt äpple verkligen väger 186 gram eller om det väger 185,5 gram eller 186,45 gram. Du kanske tycker att det inte har någon betydelse om ett äpple väger ett tiondels gram mer eller mindre, och i de flesta fall har det väl inte det, men det finns andra fall där mätningars exakthet faktiskt har stor betydelse. Det gäller inte minst inom vetenskapliga sammanhang. För att komma runt sådana här problem har man gjort en del överenskommelser. När man anger mätetal är det viktigt att hålla reda på hur många värdesiffror man räknar med. En värdesiffra är en siffra som har ett faktiskt värde, dvs en siffra som bidrar med någon form av information om hur stort ett tal är. Om ett äpple väger 186 gram har vi tre siffror (1, 8 och 6) som på något sätt faktiskt anger vikten. Alltså har den viktangivelsen tre värdesiffror. Om vi däremot har en våg som bara kan visa hela tiotals gram så kommer samma äpple att anses väga 190 gram. Här har den sista nollan ingen betydelse: eftersom vågen bara kan ange vikten i hela tiotals gram kommer den sista siffran alltid att vara en nolla när vi väger på den vågen, oavsett vad äpplet väger. Här har vi alltså bara två värdesiffror. Här kommer våra första regler om värdesiffror:

  1. Alla siffror mellan 1 och 9 (dvs alla siffror utom 0) räknas alltid som värdesiffror.
  2. Om ett tal slutar på en eller flera nollor, och inga decimaler finns angivna, går det inte att säga utifrån enbart talet om dessa nollor är värdesiffror eller inte. Om vi väger ett äpple på en våg med en noggrannhet på 1 gram, och vågen visar 190 gram, så räknas den sista nollan som en värdesiffra eftersom den bidrar med information om vad äpplet väger (den hade ju kunnat vara något annat än en nolla). Om en våg som bara kan visa hela tiotals gram visar att ett äpple väger 190 gram så räknas inte nollan.
  3. En nolla som kommer först i ett tal (dvs före någon siffra som inte är en nolla) räknas inte som en värdesiffra. I talet 0,0000121 finns det tre värdesiffror, eftersom nollorna som inleder talet inte räknas. De tre värdesiffrorna är 1, 2 och 1.
Varför räknar man inte en nolla som inleder ett tal? Vi sade tidigare att en värdesiffra är en siffra som ger oss någon form av faktisk information. Kan inte en nolla som inleder ett tal ge någon information? Det är ju trots allt skillnad mellan 0,121 och 0,0000121, rent matematiskt. Problemet är det, att man alltid kan få godtyckligt många nollor i början av ett tal genom att byta enhet. Ta vårt 186-gramsäpple som exempel. 186 har tre värdesiffror, och värdesiffrorna talar om, i princip, hur noggrann vår våg är. Vågens noggrannhet är oberoende av vilken enhet vi anger äpplets vikt i. Om vi anger äpplets vikt som 186 gram, 0,186 kilo eller 0,000186 ton påverkar inte hur noggrann våg vi har; den har fortfarande samma noggrannhet. Därför räknas inte inledande nollor.

Ovan finns ett antal exempel på när nollor inte räknas som värdesiffror. Men i vissa fall ska nollor faktiskt räknas. En nolla som kommer mellan två siffror som är värdesiffror räknas. Om vårt äpple hade vägt 201 gram hade nollan i mitten räknats som en värdesiffra, eftersom den kommer mellan två andra värdesiffror (2 och 1). Samma hade gällt om något hade vägt 2001 gram (fast då hade det nog inte varit ett äpple). Då har vikten fyra värdesiffror eftersom båda nollorna räknas. En nolla efter ett decimalkomma räknas alltid, om det finns någon annan siffra än en nolla före decimalkommat. Det gör att 0,00121 har tre värdesiffror, medan 1,00121 har sex värdesiffror. På samma sätt har 100 en, två eller tre värdesiffror (med nollor i slutet på tal utan angivna decimaler vet man inte så noga hur de ska räknas; det får framgå av sammanhanget, se ovan), medan 100,0 har fyra värdesiffror. Ettan i början räknas (alla siffror utom 0 räknas ju alltid), nollan i slutet räknas eftersom den kommer efter ett decimalkomma och det finns andra värdesiffror före decimalkommat, och de två övriga nollorna räknas eftersom de kommer mellan två värdesiffror (den första ettan och den sista nollan).